
Prepare for what "Loom"s ahead

Prepare for what
"Loom"s ahead

Dr Heinz M. Kabutz
Last updated 2020-10-20

© 2020 Heinz Kabutz – All Rights Reserved

Prepare for what "Loom"s ahead

Copyright Notice
! © 2020 Heinz Kabutz, All Rights Reserved

! No part of this course material may be reproduced
without the express written permission of the author,
including but not limited to: blogs, books, courses,
public presentations.

! Please contact heinz@javaspecialists.eu if you are
in any way uncertain as to your rights and
obligations.

Prepare for what "Loom"s ahead

whois Heinz?
! Not ketchup

! 10+ years teaching remotely from Crete
– learning.javaspecialists.eu
– Threading and concurrency, patterns, advanced topics, etc.
– Contact: heinz@javaspecialists.eu

! Java Champion, Speaker, bla bla

Prepare for what "Loom"s ahead

Questions
! Please please please please ask questions in chat!

! Interrupt me at any time
– My colleague John Green will text them to me

! There are some stupid questions
– They are the ones you didn’t ask
– Once you’ve asked them, they are not stupid anymore

! The more you ask, the more we all learn

Prepare for what "Loom"s ahead

Why do we need Virtual Threads?
! We need to find units of work that we can parallelize

! A single client request is a natural unit of work
– However, sometimes we can parallelize parts of the request
– For example, some of the data could be retrieved in parallel

Prepare for what "Loom"s ahead

Best Deal Search
! Let's say our webpage server requires 4 steps

1. We scan the request for search terms
2. We send the request to our partner websites
3. We create our advertising links
4. We collate the results from our partner websites

! We can reorder some steps without affecting result

Prepare for what "Loom"s ahead

Example: Sequential Best Deal Search
! Sequential processing is the simplest

– Simply use the server thread to do all the work

public void renderPage(HttpRequest request) {
 List<SearchTerm> terms = scanForSearchTerms(request); // 1
 List<SearchResult> results = terms.stream()
 .map(SearchTerm::searchOnPartnerSite) // 2
 .collect(Collectors.toList());
 createAdvertisingLinks(request); // 3
 results.forEach(this::collateResult); // 4
}

42.5 seconds

Prepare for what "Loom"s ahead

Example: Page Renderer with Future
! We divide the page rendering into two tasks

– Create advertising links (CPU bound)
– Searching partner sites (I/O bound)

! Search partner sites in the background with Callable
– We might get better performance this way
– If we are lucky, search results are ready when we need them

Prepare for what "Loom"s ahead

Searching in Background Thread
public class FutureRenderer extends BasicRenderer {
 private final ExecutorService executor;

 public FutureRenderer(ExecutorService executor) {
 this.executor = executor;
 }

 public void renderPage(HttpRequest request)
 throws ExecutionException, InterruptedException {
 List<SearchTerm> infos = scanForSearchTerms(request); // 1
 Callable<List<SearchResult>> task = () ->
 infos.stream()
 .map(SearchTerm::searchOnPartnerSite) // 2
 .collect(Collectors.toList());
 Future<List<SearchResult>> results = executor.submit(task);
 createAdvertisingLinks(request); // 3
 results.get().forEach(this::collateResult); // 4
 }
}

40.5 seconds

Prepare for what "Loom"s ahead

Assigning Heterogenous Tasks
! Dividing work heterogeneously has its limitations

– Our FutureRenderer not much more efficient than before
– And code is more complicated

Our system scales best when we can split the work
into lots of equal chunks that can run in parallel.

Prepare for what "Loom"s ahead

Renderer with CompletionService
! CompletionService returns tasks as they are done

– We can then collate results in the order they are returned

Prepare for what "Loom"s ahead

Renderer with CompletionService
public class Renderer extends BasicRenderer {
 private final ExecutorService executor;

 public Renderer(ExecutorService executor) {
 this.executor = executor;
 }

 public void renderPage(HttpRequest request)
 throws ExecutionException, InterruptedException {
 List<SearchTerm> terms = scanForSearchTerms(request); // 1
 CompletionService<SearchResult> completionService =
 new ExecutorCompletionService<>(executor);
 terms.forEach(term ->
 completionService.submit(term::searchOnPartnerSite) // 2
);
 createAdvertisingLinks(request); // 3
 for (int i = 0; i < terms.size(); i++) {
 collateResult(completionService.take().get()); // 4
 }
 }
}

22.5 seconds

Prepare for what "Loom"s ahead

CompletableFuture
! Our Renderer example as an Activity Diagram

start

end

Scan for
Image Info

Render
Text

Download
Image 1

Download
Image 2

Download
Image n

...

Render
Image 1

Render
Image 2

Render
Image n

...

Prepare for what "Loom"s ahead

renderPage() with CompletableFuture
public class RendererCF extends BasicRenderer {
 private final ExecutorService renderPool;
 private final ExecutorService downloadPool;

 public RendererCF(ExecutorService renderPool,
 ExecutorService downloadPool) {
 this.renderPool = renderPool;
 this.downloadPool = downloadPool;
 }

 public void renderPage(HttpRequest request) {
 renderPageCF(request).join();
 }
 public CompletableFuture<Void> renderPageCF(HttpRequest request) {
 return CompletableFuture.allOf(createAdvertisingLinksCF(request),
 scanSearchTermsCF(request)
 .thenCompose(this::searchAndCollateResults));
 }

 private CompletableFuture<Void> createAdvertisingLinksCF(
 HttpRequest request) {
 return CompletableFuture.runAsync(
 () -> createAdvertisingLinks(request), renderPool);
 }

Prepare for what "Loom"s ahead

searchAndCollateResults()
 private CompletableFuture<Void> searchAndCollateResults(
 List<SearchTerm> list) {
 return CompletableFuture.allOf(
 list.stream()
 .map(this::searchAndCollate)
 .toArray(CompletableFuture<?>[]::new)
);
 }

 private CompletableFuture<Void> searchAndCollate(SearchTerm term) {
 return searchOnPartnerSiteCF(term).thenCompose(this::collateResultCF);
 }

Prepare for what "Loom"s ahead

Tasks Wrapped in CompletableFutures
 private CompletableFuture<List<SearchTerm>> scanSearchTermsCF(
 HttpRequest request) {
 return CompletableFuture.supplyAsync(
 () -> scanForSearchTerms(request), renderPool);
 }

 private CompletableFuture<SearchResult> searchOnPartnerSiteCF(
 SearchTerm term) {
 return CompletableFuture.supplyAsync(
 term::searchOnPartnerSite, downloadPool);
 }

 private CompletableFuture<Void> collateResultCF(SearchResult data) {
 return CompletableFuture.runAsync(
 () -> collateResult(data), renderPool);
 }
}

8.5 seconds

Prepare for what "Loom"s ahead

Brian Overload?
! Concurrency Specialist Course

– https://www.javaspecialists.eu/courses/concurrency/

! Only Java concurrency course officially endorsed by
Brian Goetz, author of Java Concurrency in Practice

! Taught remotely anywhere in the world

! Includes all the latest Java concurrency constructs
– Virtual threads and Project Loom if so desired

Prepare for what "Loom"s ahead

Java Memory Model (JSR 133)
!Describes how Java memory behaves with threads

!Gives a minimum requirement of what must happen

!Allows JVM implementors some freedom

!A correctly written multi-threaded Java application
will be correct on every available Java VM

– A correctly running Java application on one JVM could still
be incorrect if it breaks JMM laws

Prepare for what "Loom"s ahead

Virtual Threads
! Lightweight, about 500 bytes

! Fast to create

! We created 32 million in 16 GB of memory

! Are executed by carrier threads
– Scheduler is currently a ForkJoinPool

• Carriers are by default daemon threads
• # threads is Runtime.getRuntime().availableProcessors()

– Can temporarily increase due to ManagedBlocker

– Moved off carrier threads when blocking on IO
• Also with waiting on synchronizers from java.util.concurrent

Prepare for what "Loom"s ahead

Let's go back to SingleThreadedRenderer
! If threads are unlimited and free, why not create a

new virtual thread for every task?

! This is how our single-threaded renderer looked
public void renderPage(HttpRequest request) {
 List<SearchTerm> terms = scanForSearchTerms(request); // 1
 List<SearchResult> results = terms.stream()
 .map(SearchTerm::searchOnPartnerSite) // 2
 .collect(Collectors.toList());
 createAdvertisingLinks(request); // 3
 results.forEach(this::collateResult); // 4
}

Prepare for what "Loom"s ahead

Virtual threads galore
public class RendererLoom extends BasicRenderer {
 public void renderPage(HttpRequest request)
 throws InterruptedException {
 Thread createAdvertisingThread =
 Thread.startVirtualThread(
 () -> createAdvertisingLinks(request)); // 3
 Collection<Thread> searchAndCollateThreads =
 scanForSearchTerms(request).stream() // 1
 .map(term -> Thread.startVirtualThread(// 2 & 4
 () -> collateResult(term.searchOnPartnerSite())))
 .collect(Collectors.toList());
 createAdvertisingThread.join();
 for (Thread searchThread : searchAndCollateThreads) {
 searchThread.join();
 }
 }
}

4.5 seconds

Prepare for what "Loom"s ahead

How to create virtual threads
! Individual threads

– Thread.startVirtualThread(Runnable)
– Thread.builder().task(Runnable).virtual().start()

• Thread.Builder can also be used for native threads

! ExecutorService
– Executors.newVirtualThreadExecutor()
– Executors.newThreadExecutor(ThreadFactory)
– ExecutorService is now AutoCloseable

• close() calls shutdown() and awaitTermination()
– Not shutdownNow()

Prepare for what "Loom"s ahead

Structured Concurrency
public class RendererLoomStructured extends BasicRenderer {
 public void renderPage(HttpRequest request) {
 try (ExecutorService mainPool =
 Executors.newVirtualThreadExecutor()) {
 mainPool.submit(() -> createAdvertisingLinks(request)); // 3
 mainPool.submit(() -> {
 List<SearchTerm> terms = scanForSearchTerms(request); // 1
 try (ExecutorService searchAndCollatePool =
 Executors.newVirtualThreadExecutor()) {
 terms.forEach(info -> searchAndCollatePool.submit(// 2 & 4
 () -> collateResult(info.searchOnPartnerSite())));
 }
 });
 }
 }
}

4.5 seconds

Prepare for what "Loom"s ahead

ManagedBlocker
! ForkJoinPool makes more threads when blocked

– ForkJoinPool is configured with desired parallelism

! Uses in the JDK
– Java 7: Phaser
– Java 8: CompletableFuture
– Java 9: Process, SubmissionPublisher
– Java 14: AbstractQueuedSynchronizer

• ReentrantLock, ReentrantReadWriteLock, CountDownLatch,
Semaphore

– Loom: LinkedTransferQueue, SynchronousQueue,
SelectorImpl

Prepare for what "Loom"s ahead

ManagedBlocker
! Might need to update our code base

– Ideally we should never block a thread with native methods
– If we cannot avoid it, wrap the code in a ManagedBlocker

Prepare for what "Loom"s ahead

Java IO Completely Rewritten
! JEP353 Reimplement the Legacy Socket API

– PlainSocketImpl replaced by NioSocketImpl

Prepare for what "Loom"s ahead

AbstractInterruptibleChannel.java
! ReentrantLock instead of synchronized

– github.com/openjdk/loom/commit/5f62bc54f8ff13492af5ffc3e393943a5629da93

synchronized (stateLock) {
 ensureOpenAndConnected();
 // record thread so it can be signalled if needed
 readerThread = NativeThread.current();
}

stateLock.lock();
try {
 ensureOpenAndConnected();
 // record thread so it can be signalled if needed
 readerThread = NativeThread.current();
} finally {
 stateLock.unlock();
}

Prepare for what "Loom"s ahead

Synchronized ⇒ ReentrantLock
! Idioms with synchronized are easier to get right

! Performance of uncontended synchronized is better
– Biased locking assigns the lock to the first thread

! Debugging synchronized is easier
– More tools for finding contention
– ReentrantLock.lock() goes into WAITING state

lock.lock();
try {
 // do operation
} finally {
 lock.unlock();
}

synchronized(monitor) {
 // do operation
}

Prepare for what "Loom"s ahead

Synchronized ⇒ ReentrantLock
! Classes in JDK began moving back to synchronized

– ConcurrentHashMap in Java 8
– CopyOnWriteArrayList in Java 9

! But, synchronized/wait is not compatible with Loom
– Virtual thread will stall the underlying carrier thread

Object monitor = new Object();
for (int i = 0; i < Runtime.getRuntime().availableProcessors(); i++) {
 Thread.startVirtualThread(() -> {
 synchronized (monitor) {
 try {
 monitor.wait();
 } catch (InterruptedException ignore) {}
 }
 });
}
Thread.startVirtualThread(() -> System.out.println("done")).join();

no output

Prepare for what "Loom"s ahead

Synchronized ⇒ ReentrantLock
! We need to migrate our synchronized code to

– ReentrantLock
– StampedLock

! In both cases, idioms are more complicated
– But compatible with virtual threads

Prepare for what "Loom"s ahead

Biased Locking Turned Off
! ConcurrentHashMap uses synchronized

– Earlier versions used ReentrantLock

! Uncontended ConcurrentHashMap in Java 15 is
measurably slower

– -XX:+UseBiasedLocking to enable it again
– Please report if turning it on makes a big difference

Prepare for what "Loom"s ahead

ThreadLocal
! Virtual threads support ThreadLocal by default

– However, it is costly to support
– Plus virtual threads are not reused, so ThreadLocals do not

make sense

! Better to use either ScopedVariables or shared
immutable objects

Prepare for what "Loom"s ahead

State Machine Disconnect
! java.lang.Thread has six states

– NEW, RUNNABLE, TERMINATED
– BLOCKED, WAITING, TIMED_WAITING

! java.lang.VirtualThread has 11 states
– NEW, STARTED, RUNNING, TERMINATED
– RUNNABLE, PARKING, PARKED, PINNED, YIELDING
– SUSPENDED, PARKED_SUSPENDED

Prepare for what "Loom"s ahead

java.lang.Thread States

New

Runnable

Terminated

Blocked

Waiting

Timed
Waiting

Prepare for what "Loom"s ahead

java.lang.VirtualThread States

Prepare for what "Loom"s ahead

VirtualThread.getState()

VirtualThread State Thread State
NEW NEW

STARTED, RUNNABLE RUNNABLE

RUNNING if mounted, carrier thread state
else RUNNABLE

PARKING, YIELDING RUNNABLE

PINNED, PARKED,
PARKED_SUSPENDED

WAITING

TERMINATED TERMINATED

Prepare for what "Loom"s ahead

Cost of old IO Streams
! Benefit of Virtual Threads, is we can use the old

java.io.InputStream and java.io.Reader
– As opposed to java.nio Channel and Buffer

! But, they actually use a lot of memory

Prepare for what "Loom"s ahead

Memory overhead of IO Streams
OutputStream InputStream Writer Reader

Print 25064 80

Buffer 8312 8296 16480 16496

Data 80 328

File 176 176 8608 8552

GZIP 768 1456

Object 2264 2256

Adapter 8480 8424

Prepare for what "Loom"s ahead

Questions?

Twitter: @heinzkabutz

